Towards user-oriented privacy for recommender system data: A personalization-based approach to gender obfuscation for user profiles

نویسندگان

چکیده

In this paper, we propose a new privacy solution for the data used to train recommender system, i.e., user–item matrix. The matrix contains implicit information, which can be inferred using classifier, leading potential violations. Our solution, called Personalized Blurring (PerBlur), is simple, yet effective, approach adding and removing items from users’ profiles in order generate an obfuscated novelty of PerBlur personalization choice obfuscation individual user profiles. formulated within user-oriented paradigm system that aims at making solutions understandable, unobtrusive, useful user. When training, algorithm able reach performance comparable what attained when it trained on original, unobfuscated data. At same time, classifier no longer reliably use predict gender users, indicating information has been removed. addition introducing PerBlur, make several key contributions. First, evaluation protocol creates fair environment compare between different conditions. Second, carry out experiments show impacts fairness diversity results. sum, our work establishes transparent protect while time improving recommendation results users by maintaining enhancing diversity.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Constructing User Profiles for Collaborative Recommender System

With the development of e-commerce and information access, recommender systems have become a popular technique to prune large information spaces so that users are directed toward those items that best meet their needs and preferences. In this paper, clustering technique is applied in the collaborative recommender framework to consider semantic contents available from the user profiles. We also ...

متن کامل

Privacy Games: Optimal User-Centric Data Obfuscation

Consider users who share their data (e.g., location) with an untrusted service provider to obtain a personalized (e.g., location-based) service. Data obfuscation is a prevalent user-centric approach to protecting users’ privacy in such systems: the untrusted entity only receives a noisy version of user’s data. Perturbing data before sharing it, however, comes at the price of the users’ utility ...

متن کامل

Respecting User Privacy in Cross-System Personalization

This paper discusses one area of our research interests that fit with the scope of the workshop. Specifically, our domain of interest discussed here is cross-system personalization (CSP), an innovative technology that enables consistent personalized user experience across different applications, platforms and even devices. Despite the potential benefits to both service providers and end users, ...

متن کامل

Explicit Dynamic User Profiles for a Collaborative Filtering Recommender System

User modelling and personalisation are the key aspects of recommender systems in terms of recommendation quality. While being very efficient and designed to work with huge amounts of data, present recommender systems often lack the facility of user integration when it comes to feedback and direct user modelling. In this paper we describe ERASP, an add-on to existing recommender systems which us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Processing and Management

سال: 2021

ISSN: ['0306-4573', '1873-5371']

DOI: https://doi.org/10.1016/j.ipm.2021.102722